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Ballistic electron transmission in out-of-plane crossed wire 
junctions 

Y Takagaki and K Ploog 
Paul-Dmde-lnstitut fiir FestkorpereleMronik, Hausvogteiplau 5-7. 101 17 Berlin, Gemany 

Received 20 October 1993 

Abstract. We have performed quantum-mechanical and classical simulationd of ballistic electron 
transpofl in three-dimensional waveguide shucmres. The considered geomevies are cmss 
junctions of two out-of-plane waveguides, in which the coupling between the waveguides 
takes place in the third direction, perpendicular to the orthogonal waveguide axes. We find 
that the transmission coefficients in the single-mode regime are strongly affected by quantum- 
mechanical interferences of scattering due to directional conversions during the msmission. 
A large modulation of straight-through msmission is achieved by varying the aspect ratio of 
the cross M i o n  of the waveguides. The transmission into the side leads is found to disappear 
over a wide range of sample parameters. The magnetic-field dependence of the Vansport is also 
examined within the classical limit. 

1. Introduction 

A considerable number of experimental and theoretical studies has been made on ballistic 
electron transport in quantum-wire structures in recent years [I]. In the arguments presented 
so far, electrons are assumed to be restricted to a two-dimensional (2D) plane of infinitesimal 
thickness. The ZD plane is then patterned to simulate the wire Structures. The assumption 
of true two-dimensionality was reasonable since the width of the wires fabricated by 
the microfabrication technologies was considerably larger than the thickness of the two- 
dimensional electron gas (PDEG) confined at the interface of GaAs-AIGaAs heterojunctions. 
Consequently, only the lowest mode is occupied below the Fermi energy for the confinement 
perpendicular to the heterointerface, whereas several modes are typically occupied when 
the lateral confinement is concerned. Because of the recent advances of microfabrication 
technologies, the wire width can now be reduced to be comparable with the thickness of 
2DEGs. Using advanced crystal-growth methods, it has been demonstrated that the wire 
width can be controlled on the order of atomic layer precision 121. In samples of these 
dimensions, the thickness of the channels need to be treated on~an equal footing with the 
width. Furthermore, using further advanced technologies, such as combined focused ion- 
beam implantation and regrowth technique [31, it will become feasible to construct three- 
dimensional (3D) quantum-wire structures, in which a rich variety of quantum-mechanical 
effects can be expected to take place. 

Recently, the quantum-mechanical electron transmission in a 3 0  out-of-plane cross 
junction has been investigated [43.  two waveguides extending in two orthogonal directions 
are placed on top of each other as illustrated in figure 1 so that the coupling between them 
takes place in the direction perpendicular to the terminal waveguides. It was found that 
resonant structures are superimposed on the transmission in contrast to the conventional 
2D junction [4], in which no transmission resonances appear if the junction consists of 
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(b) Figure 1. (a )  Schematic view of the out-af-plane 
crossed-wire junction. Because of the symmetry of 
the structuw, transmission probabilities into each end 
of the upper waveguide are identical in the absence of 
magnetic  field.^ (b) Cross-sectional views of the two 
waveguides. The bottom of the upper waveguide is 
attached to the top of the lower waveguide. 
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straight waveguides [5 ] .  Surprisingly, the transmission into the side leads was found to be 
absent over a wide range of energy in the single-mode regime 141. The two waveguides are 
effectively decoupled and thus the 3D cross junction behaves, in a sense, as if it were an 
insulator when the bend resistance [6] is measured. In the simulation of 141 the widths of 
the waveguides were assumed to be identical. 

It is the purpose of this paper to describe the transmission properties when inequivalent 
channel widths are assumed. We show that the transmission through the incident waveguide 
is modified between fairly good transparency and significant opaqueness in the singlemode 
regime as the ratio of the channel wjilths is varied. The variation is much larger than the 
classical prediction and manifests a remarkable quantum-mechanical influence due to the 
attachment of the second waveguide. We also examine the magnetotransport properties 
within the classical limit. We find that the four-terminal resistances in the structure exhibit 
a very weak magnetic-field dependence due to rebound and guiding effects. 

, 

2. Numerical model 

We take the electrostatic potential to'be zero within the channel and infinite outside. The 
window between the two waveguides is assumed to be completely transparent. Let us first 
consider the case in the absence of a magnetic field, for simplicity. Suppose that an electron 
with energy Ep = p12k&'2m is incident through the lower waveguide. The electron is either 
transmitted in the forward direction with probability TF or into each end of the side leads 
with probability Ts(= TL = TR) or reflected with probability TB. We define the transmission 
coefficients such that probability conservation reads 

TF+ TL + TR + TB = N (1) 

where N is the number of propagating modes in the incident wavegnide. In a waveguide 
of widths W, and Wrl. N is roughly given by zE~/4E.,i~ with E U ~ ,  = l r z f i2 /2mWyWz~.  
The transmission coefficients are determined by employing a waveguide-matching technique 
[7]. For comparison, we also calculate the classical transmission coefficients by a billiard 
model [8]. Electrons are injected into~the sample with velocity UF = (2mE~)' / ' .  A uniform 
distribution over the channel width and a cos 0 dependence of the angular distribution 
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on the incident angle 0 in x-y and x-z planes are used to estimate the transmission 
coefficients, which are then determined by counting the number of classical trajectories 
leaving the sample through each terminal lead [9] The clearest quantum-mechanical effects 
are expected in the single-mode regime so that we restrict our discussion to the singlemode 
regime. The average quantum transmission approaches the classical limit as the number of 
occupied modes is increased [4]. Details of the scattering properties essentially depend on 
particular choices of the channel widths, and the transmission drastically changes as higher- 
lying modes are occupied below EF in any of the terminal leads. Therefore, although the 
purpose of this paper is to examine cases of inequivalent channel widths, we assume for 
simplicity that the two waveguides have a geome~cally identical cross section. This also 
ensures simultaneous population of the modes in both waveguides. 

3. Quantum transmission in the single-mode regime 

The transmission coefficients for the identical-channel-width case, W, = Wy = W,, = 
Wzz W ,  are shown in figure 2 as a function of the Fermi energy. The energy is normalized 
to the threshold energies for the lowest and the second modes as E = (EF - E,)/(Ez -E l ) ,  
where E1 = nzh2/2mW2 and E2 = 4El.  One finds three transmission resonances in 
the singlemode regime at E = 0.6,0.93, and 0.997 (labelled A, B, and C, respectively). 
At the resonances A and C, all the transmission coefficients become roughly identical; 
TF - TS - TB - i .  On the other hand, the electron is nearly completely reflected at the 
resonance B, resembling the transmission resonances in two-terminal narrow-wide-narrow 
(NWN) geometries [ 101. This behaviour can be explained in terms of parity of the quasi- 
bound. states relevant to the resonances [5]. In the limit of weak coupling between the 
terminal leads and the intersection region, the quasi-bound state energies are given by 

E,,,,,,! = (nn/ W.")'," + Cmx/.W;")' + ( ~ ~ / [ W z ~  + wz~1)* (2) 

where W;" > W, and W;"" > wy are the effective widths of the intersection region in the 
x- and y-directions, respectively. Evaluating the probability distribution at the resonances, 
we find that the resonances A and B are respectively associated with the quasi-bound states 
( n , m , I )  = (1, 1,3) and (2, 1,2) with W:" - W;" -. 1.15W. For the quasi-bound state 
corresponding to the resonance C, the free boundary is found to be playing a crucial role, 
and thus the resonance C cannot be characterized by equation (2). The propagating mode in 
the side leads can couple to the even-parity (in the x-direction) quasi-bound state A, whereas 
it does not couple to the odd-parity state B if the symmetry of the structure is exact. Hence, 
the incident electron exits through all the out-going states with equal probabilities for the 
resonance A. On the other hand, the resonance B does not disturb TS and, as a consequence, 
the sample can be regarded as the two-terminal NWN junction when odd-parity resonances, 
such as the resonance B, are concemed. Notice that a transmission resonance corresponding 
to (2,1, I), which is naively expected to have a lower resonance energy than (2, 1,2), does 
not show up in figure 2. We ascribe this to the fact that W," and W;"" are restricted to W in 
the window region, where the probability distribution takes the maximum in.the z-direction. 
The resonance energy is, hence, pushed away above the threshold of the second mode. 

The transmission coefficients are plotted in figures 3 and 4 Tor various aspect ratios 
01 W,l/ W, of the cross section of the waveguides. We assume W, = W, and W,Z = WE, 
for figure 3, and so the two waveguides have exactly the same cross section. One finds that 
TF is, in general, suppressed while TB is enhanced as the waveguide becomes horizontally 
wide. The classical values for the transmission coefficients, which are indicated by the 
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Figure 2. (0) Transmission coefficients when equivalent waveguide widths are assumed are 
plotted as a function of normalized energy in the single-mode regime. Three transmission 
resonances art labelled A, B, and C, respectively. The horiwnhl lines indicate the values for 
the classical transmission. Transmission coefficients into the four leads become nearly identical 
at the resonances A and C. while almost complete backscattering takes place at the resonance 
B. (b)  The resonance C is shown with expanded energy scale. The arrow indicates the threshold 
of the second mode ( E  = 1). 'Ihc electron is incident only through the lowest mode, and so the 
total transmission probability for F > 1 is unity. 

horizontal lines, also show this behaviour. However, the enhancement of the backscattering 
is more pronounced in the quantum-mechanical case. In the classical case, TF(TB) varies 
from 0.54 (0.09)to 021 (0.02) as a! is increased from 0.5 to 2. whereas the straight-through 
transmission in the'quantum-mechanical case exhibits more than 80% modulation over a 
wide range of energy in the single-mode regime. We note that Ts and TB have an interesting 
relation in the quantum-mechanical cke when a is increased. They become almost identical 
over the entire energy range in the singlemode regime. 

The cross section of the upper waveguide is rotated at right angles for figure 4, i.e. 
W, = W,, and Wz2 = W,. Note that_ the symmetry of the transmission requires the Ts for 
a! = a ! ~  in figure 4(a)  to be identical with the Ts for a! = I / q  in figure 4(b). The classical 
calculation indicates that the transmission in this case is almost independent of a. However, 
the quantum-mechanical results again show the enhancement of TB and suppression of T, 
when a! is decreased, though the trend is less clear compared to the previous case. We thus 
conclude that the enhanced backscattering depends largely on the aspect ratio of the incident 
waveguide. The ran0 of the~area of the window~region to that of the waveguide cross section 
is l/a in the case shown in figure 3, whereas it is unity in the case shown in figure 4. The 
number of electrons, entering the upper waveguide and eventually being scattered increases 
with decreasing a! in the former case, whereas it is held constant in the latter case. This 
explains the behaviour of the classical transmission. In the quantum-mechanical situation, 
the transverse momentum component of the electrons is increased in the vertical direction 
when the waveguide is vertically narrowed, provided that the number of occupied modes 
is unchanged. The electrons will suffer strong scattering from the upper waveguide in this 
case, leading to the quantum-mechanical enhancement of the backscattering. 

The transmission resonances are shifted in energy as the cross section of the waveguides 
is modified. In general, the resonance energies should be increased in the normalized scale 
as the aspect ratio'deviates from unity since the increase of the confinement energy in 
the narrower direction is dominant rather than the decrease in the other direction. The 
decrease of the normalized resonancp energies for the W, Wiz cases is thus somehow 
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Figure 3. Transmission coefficients, TF (solid line), Ts (dotted line).'and Tg (dashed line), 
are plotted as a function of normalized energy for various aspect ratios (I = W,, J W, when 
W, = W ,  and Wz* = W,,. The values of (I from the top panel to the bottom one are (0) 1.2. 
1.4, 1.6, 1.8, and 2.0 and (b) 0.9, 0.8, 0.7,~0.6, and 0.5. The horizontal lines indicate the values 
for the classical transmission. The insets illusmate moss sections of the waveguides. 

unexpected. As a consequence, the resonances A and B cross each other. This is ascribed 
to the open boundary of the intersection region. Notice that the transmission coefficients 
at the resonance A are not identical in 'figure 4 since the four terminal leads axe no longer 
symmetric. Interestingly, the shape of the resonance A changes to become similar to that of 
the even-parity resonance and Ts becomes independent of the resonance as 01 is increased in 
figure 4(b),  though we find that the resonance is still associated with the (1, 1,3) quasi-bound 
state. This is because the quasi-bound state with I = 3 effectively possesses even parity 
in the z-direction within the cross section of the upper waveguide when Wz1/Wz2 = 0.5. 
The coupling of the incident mode with the resonance state A is weakened for the same 
reason in figure 4(a) when W,t/ W a  approaches two. We assume that additional resonances 
originating from the quasi-bound states that do not couple with the propagating modes due 
to parity in the symmetric structure will emerge in the transmission in the presence of 
disorder. 

Below the threshold for propagation of the excited mode, TS exhibits a nearly complete 
absence over a wide energy range [4]. This results in a divergence of the bend resistance 
RB, in which two adjacent leads are used as current source and sink, i.e., a current flows 
from one waveguide to.the other, and the voltage difference is measured between the other 
two leads [6], since RB is related to the transmission coefficients as [ l l]  

(3) 
Our results indicate that the quenching of Ts appears over a wide range of the sample 

RB = ( h / 2 e 2 ) ( G  - T S ) / ~ T S ( T S  + 5). 
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Figu? 4. Solid, dotted, and dashed lines indicate respectively tmsmission coefficients TF, Ts, 
and TB for various ratios of the widths of the waveguides when W, = W,t and W,i = W,. 
The cross sections of the waveguides are rotated at right angles to each other 3s illustrated by 
the insets. The values of E, from the top panel to ffie boaom one are (a)1.2. 1.4, 1.6. 2.0, and 
3.0 and ( b )  0.9, 0.8, 0.7, 0.5, and 0.4. The horizontal lines indicate the values for the classical 
mansrdission. 

parameters and is a generic property of the 3D cross junction. The single-mode transport 
is crucial for the quenching phenomenon and Ts is not quenched in the multi-mode regime 
even if the electron is incident only through the lowest mode as shown in figure Z(6). 
Generally, the quenching appears in the energy range above the resonance A. Therefore, 
the energy range of the quenching takes the maximum in the normalized scale as the aspect 
ratio is unity. 

4. Classical magnetotransmission 

We now consider the effects of a magnetic field B applied parallel to the z-axis on the 
transmission properties. The direction of the magnetic field is chosen such that the Lorentz 
force deflects elecqons to increase TL at the expense of TF as well as TR. To evaluate the 
transmission probabilities in the semi-classical limit, we extended the method of Beenakker 
and van Houten [si to the 3D geometry. The electrons are injected from a lead, in which 
B is assumed to be zero, attached to the intersection region so as to allow us to use the 
same injection distribution as employed for the E = 0 case. Note that, in any realistic 
simulation, it is required that rounded corners are taken into account, which will lead to 
a variety of anomalous behaviours in the weak-field Hall resistance [8,9]. However, we 
neglect the smooth'corners to concentrate on the effects of the 3D nature of the geomevy 
on the magnetotransport properties. 

, ~ : _  
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Flyre 5. (a) Transmission coefficients are 
plotted as a function of magnetic field for 
the identical-chaMel-width case. The insets 
illustrate guiding and rebound trajectories. (b) 
Hall resistance and bend resistance calculated 
from the transmission coefficients in (a). The 
conventional Hall resistance RHIRo = i B / B o  
in a 3 0  in-plane cmss junction is indicated by 
the dashed line. The inset illushater auajectory 
that leads electrons to the right side probe in 
high magnetic fields. 
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In figure 5(a), we show the transmission coefficients normalized by the total flux 
N = ( i r / 4 ) ( k ~ w / i r ) '  as a function of magnetic field. (The widths of the channels are 
assumed to be identical.) The normalization factor for the magnetic field is Bo = %kF/eW. 
The Hall resistance RH and the bend resistance RB calculated from the transmission 
coefficients as [ l l ]  

(4) 

(5) 

are plotted in figure 5(6). Here, the resistances are normalized by Ro = h/2Nez. At low 
magnetic fields, TL increases and TR decreases monotonically as B is increased, resulting 
in the nearly linear dependence of RH around zero fieId. The value of RH is, however, 
significantly smaller than that in a 3D in-plane cross junction (dashed line). This can be 
explained in terms of guiding and rebound trajectories in the out-of-plane cross junction. 
Because of the configuration of the waveguides, many electrons are guided into the forward 
lead along the side walls of the incident waveguide (left inset in figure 5(u)) or reflected from 
the side wall into the wrong Hall probe (top inset in figure 5(u)) [12]. These trajectories 
are responsible for the suppression of TL and the enhancement of TR. When the diameter 
of the cyclotron orbit 2hkL/eB, where k l  is the magnitude of the wave vector transverse 
to the magnetic field, becomes less than W, the rebound trajectories cease to exist. The 
transmission TR into the right side lead is suppressed for B > 2Bo compared to the low- 
field regime since no orbits intersect both opposite side walls. We note, however, that 
some electrons are still led into the right side probe~in high magnetic fields due to the 

RH = (We 'XTL - TR)/[VF + TL)' + (TF + TR)'I 
RB = (h/2ez)(T2 - TLTR)/(TL + TR)[(TF -t TL)'+ (TF TR)'] 
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trajectories illustrated in the inset of figure 5(b). The transmission coefficients are averaged 
over the cyclotron diameter because of continuous z-component of electron momentum in 
the classical limit. Therefore, the magnetoresistance reveals less clear features around the 
critical magnetic field Bc = 280 in the 3D case compared to the 2D case. 

Let us discuss RB, in which the guiding effect is particularly highlighted. Because of 
preferential forward transmission in the ballistic regime, RB takes a finite value at B = 0 
161. As shown in figure 5(b), RB is suppressed in weak magnetic fields as the straight- 
through trajectories &e destroyed. The Re in the out-of-plane cross junction obviously 
takes non-zero values over an extremely wide range of B due to the guiding. Furthermore, 
RB is, in contrast to'the ZD case, enhanced for B > B,, where the cyclotron orbits cannot 
reach the forward and the right side leads in the in-plane junction (and hence RB = 0). The 
ratios of Tp, TL, and T, are found to be roughly independent of B for B > B,. The electron 
motion in the z-direction is not influenced by the perpendicular magnetic field, and so the 
main effect of B in this strong-field regime is to increase a fraction TB (i.e., to decrease 
the effective total flux N - TB that contributes to the transmission process), resulting in the 
enhancement of RB (since the resistance is inversely proportional to the amount of flux). 

Y T&gaki and K Ploog 

5. Conclusions 

We have presented classical and quantum-mechanical transmission properties in out-of- 
plane cross junctions in the single-mode regime. The quantum transmission is drastically 
modified as the aspect ratio of the cross section is vaned, indicating the importance of the 
quantum-mechanical' nature of geometrical scattering. The transmission coefficients exhibit 
a very weak magnetic-field dependence within the classical limit due to rebound and guiding 
trajectories in the out-of-plane geometry. The bend resistance is found to be enhanced in 
strong magnetic fields. 
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